DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age.
نویسندگان
چکیده
In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overrides the DNA damage-induced MI arrest. Furthermore, this MI checkpoint is compromised in oocytes from aged mice. These data lead us to propose that the SAC is a major gatekeeper preventing the progression of oocytes harbouring DNA damage. The SAC therefore acts to integrate protection against both aneuploidy and DNA damage by preventing production of abnormal mature oocytes and subsequent embryos. Finally, we suggest escaping this DNA damage checkpoint in maternal ageing may be one of the causes of increased chromosome anomalies in oocytes and embryos from older mothers.
منابع مشابه
The Drosophila Grp/Chk1 DNA Damage Checkpoint Controls Entry into Anaphase
It is well established that DNA damage induces checkpoint-mediated interphase arrest in higher eukaryotes, but recent studies demonstrate that DNA damage delays entry into anaphase as well. Damaged DNA in syncytial and gastrulating Drosophila embryos delays the metaphase/anaphase transition . In human cultured cells, DNA damage also induces a delay in mitosis . However, the mechanism by which D...
متن کاملThe sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis
Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, whi...
متن کاملOxidative Stress Delays Prometaphase/Metaphase of the First Cleavage in Mouse Zygotes via the MAD2L1-Mediated Spindle Assembly Checkpoint
In zygotes, DNA damage delays the first cleavage to enable repair. Our previous study found that 0.03 mM hydrogen peroxide (H2O2) was the minimum concentration required for induction of oxidative DNA damage in mouse zygotes and that this represented the most similar situation to the clinical phenomenon. In this study, we quantified the cleavage rates of cells in blastocysts at different develop...
متن کاملDNA damage responses in mammalian oocytes.
DNA damage acquired during meiosis can lead to infertility and miscarriage. Hence, it should be important for an oocyte to be able to detect and respond to such events in order to make a healthy egg. Here, the strategies taken by oocytes during their stages of growth to respond to DNA damaging events are reviewed. In particular, recent evidence of a novel pathway in fully grown oocytes helps pr...
متن کاملThe spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes
In Xenopus oocytes, the spindle assembly checkpoint (SAC) kinase Bub1 is required for cytostatic factor (CSF)-induced metaphase arrest in meiosis II. To investigate whether matured mouse oocytes are kept in metaphase by a SAC-mediated inhibition of the anaphase-promoting complex/cyclosome (APC/C) complex, we injected a dominant-negative Bub1 mutant (Bub1dn) into mouse oocytes undergoing meiosis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 6 شماره
صفحات -
تاریخ انتشار 2015